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ABSTRACT

An important and challenging technology aimed at the next generation of aero-
space vehicles is that of structural health monitoring. The key problem is to deter-
mine accurately, reliably, and in real time the applied loads, stresses, and displace-
ments experienced in flight, with such data establishing an information database for
structural health monitoring.

The present effort is aimed at developing a finite element-based methodology
involving an inverse formulation that employs measured surface strains to recover
the applied loads, stresses, and displacements in an aerospace vehicle in real time.
The computational procedure uses a standard finite element model (i.e., “direct
analysis”) of a given airframe, with the subsequent application of the inverse inter-
polation approach. The inverse interpolation formulation is based on a parametric
approximation of the loading and is further constructed through a least-squares min-
imization of calculated and measured strains. This procedure results in the gov-
erning system of linear algebraic equations, providing the unknown coefficients that
accurately define the load approximation.

Numerical simulations are carried out for problems involving various levels of
structural approximation. These include plate-loading examples and an aircraft wing
box. Accuracy and computational efficiency of the proposed method are discussed
in detail. The experimental validation of the methodology by way of structural
testing of an aircraft wing is also discussed.

 

INTRODUCTION

Advanced structural health monitoring is generally regarded as a vital technol-
ogy for the next generation of aeronautical and space systems [1]. This technology
is aimed at preventing catastrophic structural failures and is comprised of three
facets: (a) determination of stresses and deformations of structural compo-



nents, (b) identification of external loads, and (c) detection of critical damage
mechanisms such as cracking, delamination, and corrosion.

The development of the health-monitoring technology involves multidisci-
plinary research in the areas of computational mechanics, intelligent information
systems, and sensor networks. Recent advances in the design of health-monitoring
systems for aerospace applications are discussed in [1, 2].

The present effort is aimed at developing a finite element-based methodology
involving an inverse formulation that employs measured surface strains to recover
the applied loads, stresses, and displacements in an aerospace vehicle in real time.
The determination of loads, stresses, and displacements using experimentally
measured structural response (strains) is defined as an inverse problem. This type of
problem may result in an ill-posed governing system of equations and, therefore,
requires a special approach to obtain an accurate and stable solution. The mathe-
matical fundamentals of inverse problems may be found in [3-5].

A review of recent literature indicates that inverse methods are used quite exten-
sively in mechanics. Maniatty and co-workers proposed a finite element-based
method for solving inverse elastic [6] and elastoviscoplastic [7] problems. Their
method uses a regularization procedure involving two matrices that impose smooth-
ness on the solution. Several one- and two-dimensional examples illustrate the
application of the method. More recently, Maniatty [8] studied the regularization
procedure utilizing a statistical approach by Tarantola [4]. This analysis provides an
estimate of the errors in the solution of an inverse problem. The main drawback of
this method is that it requires iterations. For complex three-dimensional structures,
it may lead to convergence difficulties and high computational costs.

The application of artificial neural networks to load identification was proposed
by Cao et al. [9]. In their approach, the load-strain relationships are established by
using a learning algorithm for a multi-layer neural network. The convergence of this
algorithm, however, strongly depends on the set of chosen learning parameters. The
learning can even diverge if the combination of parameters is not appropriate.

Martin et al. [10] discussed a non-iterative method for the reconstruction of
surface tractions using a boundary element method. The restriction of the method is
that displacements and tractions have to be applied simultaneously on a portion of
the surface structure. Okuma and Oho [11] studied the identification of dynamic
characteristics using an inverse problem framework. The set of spatial matrices is
determined by using experimentally measured frequency response functions. This
method, however, requires additional constraint equations related to the damping
matrix.

The present approach combines a computational mechanics methodology with
experimentally measured strain data to determine the in-flight response characteris-
tics in real time. In-flight internal and external loads, unlike other flight parameters,
cannot be directly measured. Therefore, an inverse approach is required to construct
the solution. A finite element-based method for experimental data analysis is
developed and leads to the determination of stresses, displacements, and external
loads. Numerical simulations are performed using a linearly elastic plate and wing
structure to study the accuracy and computational effectiveness of the method.



INVERSE INTERPOLATION METHOD

Consider an airplane that performs a maneuver or is subjected to atmospheric
turbulence. A change of the external and internal forces causes linear and angular
displacements, strains, and stresses at each point of the structure. The sensors are
embedded in the structure along specified patterns, allowing strain component
measurements at certain locations. The strain sensors measure the changes in the
strain components *{ }ε at n specified locations and appropriately store this informa-
tion in an onboard computer. These strain data are used as input to the inverse
analysis of the computational model based on a finite element formulation. Since
the current approach is based on a finite element method, a finite element model of
the airframe is first developed.

Consider external loads applied to the airplane incrementally. Any change of
forces acting on the aircraft is assumed to be small. At each increment or step of
loading, the governing equations of the linear finite element approximation have the
form

[ ] { } { }=K U P (1)

where [ ]K is a stiffness matrix, { }U is a nodal displacements vector, and { }P is a
vector of equivalent nodal forces at the current load increment.

The nodal strains can be expressed in terms of nodal displacements using the
strain-displacement matrix [ ]B as

{ } [ ]{ }=ε B U (2)

Given a surface load, ( )p s , nodal forces are readily expressed as

{ } [ ] ( )
T

s

p s ds= ∫P N (3)

where the integration is performed over the surface of the structure s.
The inverse problem is formulated as follows. First, one needs to establish a set

of possible load cases, m. Each load case is characterized by the specifics of the
aerodynamic load distribution and inertia forces. For the ith load case, the load
approximation is expressed in parametric form as

1

( ) ( )
l

i ij ij
j

F s a R s
=

= ∑ (4)

where ( )ijR s are chosen spatial distribution functions and ija are unknown
approximation parameters. These unknown parameters represent flight performance
characteristics such as load factor, angle of attack, and speed. There can also be
certain inequity constraints imposed on these parameters



( ) 0ijaϕ ≥ (5)

The approach proceeds with a direct finite element analysis performed for each ith

load case. The corresponding displacements, { }ijU , and strains, { }ijε , are deter-
mined from Eqs. (1) and (2) as
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ij
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R s ds
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R s ds
−= ∫ijε B K N (7)

The stresses are then computed from Hooke’s constitutive relations

{ } [ ]{ }=ij ijσ D ε (8)

where [ ]D denotes the elasticity matrix. The displacements, strains, and stresses
corresponding to the ith load are computed from the relations
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The parameters of the load interpolation, Eq. (4), are computed using a least squares
procedure minimization, i.e., for the ith load case, we have
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The minimization of Eq. (12) with respect to the parameters ija , while accounting
for the constraints (5), results in a governing system of linear algebraic equations
that is readily solved for the ija coefficients. In this manner, a set of the ija
solutions for m load cases can be obtained.

It is clear that a suitable criterion must be established in order to select the most
appropriate load case. One such criterion employs a quality function, ( , , )iQ S m n , in
which the calculated iS values are used. A particular form of this function is con-
structed based on computer simulations and experimental statistics. For example, if
Chebishev’s polynomials are chosen to represent the ( )ijR s functions, the quality
function can be represented as [5]
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where 1 H− is the probability at which this estimate is valid. A minimum of the
quality function ( , , )iQ S m n corresponds to the kth load case, providing the best
solution to the overall inverse problem. For the known ( 1, )kja j l= parameters, the
resulting forces acting on the structure are calculated from Eq. (4), followed by the
displacement, strain, and stress computations using Eqs. (6-11).

NUMERICAL SIMULATIONS

The present approach is validated using a two-step procedure. A finite element
model is first developed for a given linearly elastic structure under the applied load

( )p s . Surface strains *{ }ε are then computed at n specified locations, with these
quantities representing the “measured” experimental strains. In the second step of
the analysis, an inverse method is employed that uses these measured strains, *{ }ε ,
and the parametric approximation of the load, ( )iF s , as given in Eq. (4). The strains
are computed from the loads represented by the ( )ijR s functions. The parametric
approximation of the load is obtained via a least-squares minimization of Eq. (12).
Then, the applied loads and structural response are recovered.

Two numerical examples are presented. The first is a cantilever plate under
transverse loading, whereas the second is a simplified model of an aircraft wing
box. The material properties used are those for a typical aluminum alloy with
Young’s modulus E = 72 GPa and Poisson’s ratio ν =0.3. The finite element
analysis is performed using a commercial finite element code, ANSYS [12], with
both models employing “SHELL 63” shell elements.

Plate Analysis

Consider a cantilevered rectangular plate under transverse loading
2 2

1 2 3 4( , )p x y b x b y b y b= + + + applied normal to the top of the plate as shown in
Figure 1. Two loading cases are considered: (a) a dominant bending load given by
the parameters 1 0.25b = − , 2 4b = − , 3 0b = , and 4 1.5b = ; and (b) a dominant
torsion load with 1 0.25b = − , 2 4b = − , 3 15b = , and 4 0.67b = . Normal strains in
the x-direction, *{ }xε , and in the y-direction, *{ }yε , simulating experimental
measurements, are first computed from the finite element analysis (first step) at 17
strain-gage locations ( )34n = , uniformly spaced along the line 0.125y = − on the
upper surface of the plate, 0z = . The plate is discretized using a mesh of 4 × 16
shell elements.



Figure 1. The cantilevered plate problem.

Assuming that the load approximation is represented by 2 2
1 2( , )F x y a x a y= +

3 4a y a+ + , the present inverse approach gives rise to the values of the ( 1, 4)ja j =
coefficients summarized in Table I. Their favorable comparison with the corre-
sponding values of the ( 1,4)jb j = coefficients for the actual load case clearly
demonstrates that the proposed method defines the load accurately.

TABLE I. COEFFICIENTS OF LOAD APPROXIMATION

Load Case 1a 2a 3a 4a

a -0.245 -3.99 -0.004 1.499
b -0.250 -3.99 14.99 0.670

Aircraft Wing Box

The second example concerns the wing box depicted in Figure 2. The upper and
lower panels are stiffened with integral stringers. As shown in the figure, three ribs
are attached spanwise on the inside of the wing. The load 2 2

1( , )p x y b l x= −
( 1 0.5b = ) is applied normal to the upper surface of the wing. There are 11 strain-
gage locations for *{ }xε ( 11)n = , uniformly spaced along the line 21.4y = − on the
upper surface of the wing.

Here, we select the load approximation function as 2 2
1( , )F x y a l x= − . In

order to study the effect of measurement errors on the accuracy of the method, the
measured strains are assumed in the form }}{{ **

x ∆ε . The components of the vector
of relative errors *{ }∆ are given as 1 0.05i iδ∆ = + , where iδ is a random variable
having a standard normal distribution. The recovered 1a coefficient is in the range
of 0.494-0.502. These values agree well with the actual load parameter 1 0.5b = .
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Figure 2. Aircraft wing box and loading.

FUTURE DEVELOPMENTS

Additional numerical studies based on different loadings will be performed. In
order to correlate and quantify the results of the inverse approach, an experimental
validation of the methodology is underway. Structural testing of an aircraft wing
will be performed in an experimental setup comprised of a wing box, three-
dimensional frame, and loading and measurement systems. These tests will allow:
(a) the determination of the accuracy of the proposed method, (b) a study of the
errors associated with the application of strain gages, and (c) development of
recommendations for the number and locations of strain gages.
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